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ABSTRACT

The total synthesis of hirsutellones A (1), B (2), and C (3) has been achieved through a bioinspired late-stage sequence starting from advanced
intermediate 6. The sequence proceeded via labile intermediate 17,10-dehydrohirsutellone B (5) and delivered, in addition to the natural products
(1�3), hirsutellone analogue 10,20,17-epi-hirsutellone C (10,20,17-epi-3).

Heterodimeric hirsutellone F (4) and 17,10-dehydrohir-
sutellone B (5),2 the putative biosynthetic precursor to
hirsutellones 1�4 (Scheme 1), were recently added to the
growing class of hirsutellones [A (1), B (2), and C (3),1

Scheme 1]. Isolated from the seed fungus Trichoderma sp.
BCC 7579 incubated in a bioreactor (as opposed to
incubation in an Erlenmeyer flask) by Isaka and co-work-
ers, hirsutellone F (4) was shown to decompose to its
apparent components, 17,10-dehydrohirsutellone B (5)
and hirsutellone A (1), upon exposure to basic conditions
as shown in Scheme 1.2 When the decomposition of 4 was
carried out in the presence of NaBH4, hirsutellone B (2)
was obtained in addition to hirsutellone A (1). Further-
more, it was determined that when the basic decomposi-
tion of 4 was performed in the presence of H2O2�NaOH,
hirsutellone C (3) was generated together with hirsutellone
A (1). Apparently, in the latter reactions, the fleeting
intermediate 5 was intercepted (17,10-reduction or epoxi-
dation) to a significant extent prior to its conversion to
hirsutellone A (1) through based-induced bond migra-
tion accompanied by ring expansion. These observations

prompted the isolation chemists to propose a late-stage
biosynthetic hypothesis involving labile intermediate 5 as
the biogenetic precursor of all hirsutellones shown in
Scheme 1.3 In this communication, we report the in situ
generation of this 17,10-dehydrohirsutellone B (5) and its
conversion to hirsutellones A (1), B (2), and C (3), thereby
confirming the Isaka hypothesis and achieving the first
total synthesis of hirsutellonesA (1) andC (3) and a second
generation total synthesis of hirsutellone B (2).4,5 These
natural products are notable not only for their novel
molecular architectures but also for their promising anti-
tuberculosis properties (active against Mycobacterium
tuberculosis, MIC = 0.78 μg/mL for 1�3).1

Our initial attempts to obtain the desired 17,10-dehydro-
hirsutellone B (5) through the obvious route involving site-
selective oxidation of hirsutellone B (2) failed, presumably
due to steric hindrance at C-17 and the arrangement of the
β-ketoamide moiety carbonyl groups of the substrate (2)
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(most likely locked in an eclipsed conformation). Finding
ourselves in this predicament, we decided to explore the
development of a synthetic strategy to the targeted biosyn-
thetic precursor (5) from the previously synthesized inter-
mediate 64 (Scheme 2). Thus, diol 6 was successfully
converted to hydroxy lactone 7 through the action of
p-TsOH (87% yield) and then deoxygenated through a
two-step sequence involving thiocarbonate formation
[PhOC=SCl] and reduction (n-Bu3SnH,AIBN)6 to afford
the expected β-keto lactone in 78% overall yield. NMR
spectroscopic analysis of the latter compound revealed its
exclusive existence in CDCl3 solution as its enol form 8
(Scheme 2). An X-ray crystallographic analysis of a single
crystal of this compound obtained from CH2Cl2/hexanes
(mp 163�166 �C, dec.) confirmed its enolic structure in the
solid state and proved the Z-geometry of its enol system
(see ORTEP, Scheme 2). Exposure of enol 8 to DDQ and
K2CO3 led to the corresponding R-hydroxy ketone, whose
dehydrationwithMartin’s sulfurane7 gaveketo furanone 9
in 73% overall yield.

Scheme 2. Synthesis of Keto Furanone 9Scheme 1. Molecular Structures of Hirsutellones A (1), B (2), C
(3), and F (4), Their Postulated Biogenetic Precursor 17,10-
Dehydrohirsutellone B (5), and Isaka’s Confirmed Late-Stage
Biosynthetic Hypothesis for Hirsutellones 1�32

Scheme 3. Preparation of Hydroxyamide 12
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With the procurement of keto furanone 9, only amida-
tion, oxidation, and ring closure remained inorder to reach
the targeted molecule (5). The direct amidation of 9 proved
difficult, yieldingonly17%of thedesiredhydroxyamide (12)
after 48 hof heating in neatNH3 (85%based on recovered 9)
as shown in Scheme 3. In contrast, epoxidation of 9 with
H2O2 under basic conditions (aq. NaOH) at 0 �C led to
epoxy lactone 10 in 90% yield within 30 min (single diaster-
eoisomer, R-stereochemistry assigned by NOE studies; see
Scheme 3). Pleasantly, ammonolysis of the lactonemoiety of
epoxy lactone 10 proceeded smoothly to afford epoxy
hydroxy amide 11 in excellent yield (91%), requiring only
bubbling of NH3 gas through a solution of the substrate in
MeOH/THF/H2O (4:4:1) at 0 �C for 1 h. The latter com-
pound was then deoxygenated through the action of SmI2,
leading to the desired unsaturated hydroxy amide 12 in 67%
yield.8 In this reaction the initially formed 1,2-diol suffers
stereoselective dehydration to afford the desired geometrical

isomer of the unsaturated hydroxy amide as confirmed later
in the sequence (see ring closure13f5þ 20-epi-5, Scheme4).
Exposure of 12 to DMP then produced keto amide 14

which spontaneously cyclized, furnishing amixture of 17,10-
dehydrohirsutellone B (5, major) and 20-epi-17,10-dehydro-
hirsutellone B (20-epi-5, minor), two labile intermediates
(not detectable by TLC) whose structures were inferred
from their successful conversion to the naturally occurring
hirsutellones A (1), B (2), and C (3), and 10,20,17-epi-
hirsutellone C (10,20,17-epi-3), respectively, as shown in
Scheme 4. Synthetic hirsutellones A, B, and C exhibited
identical physical properties to those reported for thenatural
products.1 Exhibiting spectroscopic and spectrometric data
consistent with its structure, compound 10,20,17-epi-3 has
not been reported as a natural product as yet. However, it
should not be a surprise if it is found in nature in the future,
given the ease by which it is formed from 20-epi-5 (17,10-
dehydro-20-epi-hirsutellone B). 10,20,17-epi-Hirsutellone C
(10,20,17-epi-3)wasalsoobtained fromepoxyhydroxyamide
11 by DMP oxidation as shown in Scheme 5 (85% yield).
The described chemistry provides support for the Isaka

biosynthetic hypothesis for hirsutellones A�C (1�3) and
constitutes the first total synthesis of hirsutellones A (1), C
(3), and 10,20,17-epi-hirsutelloneC (10,20,17-epi-3) aswell as
a second synthesis of hirsutellone B (2).
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Scheme 4. Biomimetic Synthesis of Hirsutellones A (1), B (2),
and C (3) and 10,20,17-epi-Hirsutellone C (10,20,17-epi-3)

Scheme 5. Conversion of Epoxy Amide 11 to 10,20,17-epi-Hir-
sutellone C (10,20,17-epi-3)
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